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The rules of union and intersection of probabilistic fuzzy sets guided us to construct
a related operator algebra. In a Hilbert space, where each fuzzy set is represented by
an orthonormal vector, the union and the intersection operators generate a well-defined
algebra with a unique representation.
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1. INTRODUCTION

Fuzzy sets since their introduction (Zadeh, 1965, 1978; Zimmermann, 1984)
have received a great deal of interest. For an ordinary set, a given object either
belongs or does not belong to the set, whereas for a fuzzy set the degree of mem-
bership of an object is given by the value of the membership function for the object.
Hence, one can say that there is an uncertainty associated with the membership of
an element to a given fuzzy set. This is reminiscent of the uncertainty principle in
quantum physics where two observables such as momentum and position along
a given direction can not be measured simultaneously with perfect precision. In
quantum theory, physical observables are described by (noncommuting) Hermi-
tian linear operators acting on a complex Hilbert space. This quantization process
forms the basis of quantum theory. Well-known examples of algebras defined by
relations satisfied by such operators are

a a∗ − a∗a = 1 Bosonic algebra
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e-mail: faydin@yildiz.edu.tr.

771
0020-7748/06/0400-0771/0 C© 2006 Springer Science+Business Media, Inc.



772 Arik and Aydın

a a∗ + a∗a = 1; a2 = 0 Fermionic algebra

J1J2 − J2J1 = iJ3; cyclic permutations Angular momentum algebra.

The first and the last of these systems form a Lie algebra whereas the second one
forms a Lie super-algebra. With the introduction of q-oscillators (Arik and Coon,
1976; Biedenharn, 1989; Bonatsos et al., 1991; Chakrabarti and Jagannathan,
1991; Chaichian, 1990; Chaichian et al., 1991; Daskaloyannis, 1991; Fairlie and
Zachos, 1991; Hayashi, 1990; Jannussis et al., 1991; Macfarlane, 1989) and quan-
tum groups (Drinfeld, 1986; Fadeev et al., 1989; Jimbo, 1986; Woronowicz, 1987),
algebras which do not fall into these categories, but in the limit q → 1 of the de-
formation parameter reduce to Lie algebra or Lie super-algebra were considered.

This paper may be considered as a first step in establishing a relationship
between fuzzy sets and quantum physics. We introduce an algebra related to
probabilistic fuzzy sets. We will take the membership functions of the different
elements to be represented by commuting Hermitian operators. This is the sim-
plest possible choice for quantization and most probably a consistent and useful
quantization of fuzzy sets will involve noncommuting membership functions for
different elements. However, as we will show, even our simple choice yields a
highly nontrivial operator algebra for union and intersection operators.

This paper is partly motivated by the algebra of the quantum matrix group
SUq(2) (Drinfeld, 1986; Faddeev et al., 1989; Jimbo, 1986; Woronowicz, 1987).
The relations below form the algebra

a∗a + q−1 b b∗ = 1 (1)

a a∗ + b b∗ = 1 (2)

b b∗ = b∗b (3)

a b = √
q b a (4)

a b∗ = √
q b∗a (5)

where 0 < q ≤ 1 and the SUq(2) matrix is given by

(
a b

−1√
q

b∗ a∗

)
.

The truncation of this algebra by omitting b, b∗ and taking the relation obtained
from (1) and (2) by eliminating b b∗ gives

a a∗ − q a∗a = 1 − q (6)

a∗a ≤ 1. (7)
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This algebra, up to a normalization of a, is the q-oscillator algebra and its nontrivial
representation (Arik and Coon, 1976) is given by

a |n〉 =
√

1 − qn |n − 1〉 (8)

a∗|n〉 =
√

1 − qn+1 |n + 1〉 (9)

where n = 0, 1, 2, · · ·, such that

a a∗|n〉 = (1 − qn+1) |n〉. (10)

The ket vector |n〉 describes the quantum state labeled with quantum number n,
a∗ is the creation operator and a is the annihilation operator. In (10), normalized
eigenstates of a a∗ are labeled by the nonnegative integer n which is related to
the occupation number of the q-oscillator. If we instead label the states with the
eigenvalue of a a∗, we obtain

a a∗ |µ〉 = µ |µ〉 (11)

a |µ〉 =
√

q−1(µ + q − 1) |q−1(µ + q − 1)〉 (12)

a∗|µ〉 = √
µ | q µ + 1 − q〉 (13)

where µ ≡ 1 − qn+1.
Note that in these expressions q is a label of the algebra whereas µ is related to

the representation. A more symmetrical form can be obtained by letting ν ≡ 1 − q

so that

a a∗ |µ〉 = µ |µ〉 (14)

a |µ〉 =
√

(1 − ν)−1(µ − ν) |(1 − ν)−1(µ − ν)〉 (15)

a∗|µ〉 = √
µ |µ + ν − µν〉 (16)

The action of a∗ in (16) resembles the union rule for the membership functions
of probabilistic fuzzy sets. If µ is the probability that a given element belongs to
fuzzy set A and ν is the probability that the same element belongs to fuzzy set B,
then 1 − (1 − µ)(1 − ν) = µ + ν − µν is the probability that it belongs to A ∪
B. This relation suggests that an operator algebra related to union and intersection
of probabilistic fuzzy sets will have some similarities to the SUq(2) algebra given
by (1)–(5).

The most important question is the physical meaning of the dimensionless
parameter q. In most physical applications 1 − q ∝ h where h is the Planck’s
constant. Independent of these models but motivated by nonextensive statistical
mechanics (Erzan, 1997; Tsallis, 1994) and using the framework of random sets
an identification 1 − q = 1

M
was made (Arik et al., 1997), where M is the number

of elements in the universal set. It was shown that random sets obtained by
choosing a random element from the universal set are created by a q-oscillator
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creation operator and a union of n such random sets has SUq(n) quantum group
symmetry (Arik et al., 1997). When such random sets are transformed into fuzzy
sets by taking the one point trace as explained below, the parameter q is fixed
and it is related to the membership function µ of an element of the fuzzy set by
µ = 1 − q = 1

M
. In this paper, we will still make the identification µ = 1 − q but

the parameter q will not be fixed. We will show that a consistent algebra possessing
operators labeled by all values of 0 < q ≤ 1 can be constructed, leading to the
operator algebra of quantized fuzzy sets having a unique representation on the
Hilbert space of fuzzy sets.

2. RELATIONS BETWEEN RANDOM SETS,
Q-OSCILLATORS AND FUZZY SETS

In order to demonstrate the relations between random sets, q-oscillators and
fuzzy sets, let us start with an example of a simple universal set {e1, e2} from
which we construct the most general random set

P = {{φ}p00 , {e1}p10 , {e2}p01 , {e1, e2}p11} (17)

and say that the set P, for e.g., is equal to {e1} with probability p10. Note that,
a classical set is obtained when one of the pij is set to unity and the others are
set to zero. The probabilistic interpretation of the numbers 0 ≤ pij ≤ 1 requires∑

pij = 1. The average number of elements in P is calculated as p00 × 0 + p10 ×
1 + p01 × 1 + p11 × 2. Let us consider another random set

Q = {{φ}q00 , {e1}q10 , {e2}q01 , {e1, e2}q11} (18)

and the union P ∪ Q

R = P ∪ Q = {{φ}r00, {e1}r10 , {e2}r01 , {e1, e2}r11} (19)

where the probabilities rij are obtained by multiplying pij and qij and summing
over all possibilities. For example, {e1} in P ∪ Q can be obtained by {φ} ∪ {e1},
{e1} ∪ {φ}, and {e1} ∪ {e1} with respective probabilities p00q00, p10q00, p10q10.
Hence, r10 = p00q10 + p10q00 + p10q10. Similarly, the intersection S

S = P ∩ Q = {{φ}s00, {e1}s10 , {e2}s01 , {e1, e2}s11} (20)

is defined with the probabilities s00 = p00(q00 + q10 + q01 + q11) + p10(q00 +
q01) + p01(q00 + q10) + p11q00, s10 = p10q10 + p10q11 + p11q10, s01 = p01q01 +
p01q11 + p11q01, and s11 = p11q11.

The relationship of this formulation to that of reference (Hestir et al., 1991;
Shafer, 1976) is that given a universal set with M elements we can construct a
particular set

A = {{e1} 1
M
, {e2} 1

M
, . . . , {eM} 1

M

}
(21)



Probabilistic Fuzzy Sets and Related Operator Algebra 775

which can be considered to be a one element random set which is formed by
randomly choosing an element from the universal set. It can then be shown that
taking the union of A with itself n times gives rise to a random set with an average
number of elements (1 − q)−1(1 − qn) where 1 − q = 1

M
(Arik et al., 1997). The

random set obtained in this case is a very special example. However, it can be used
to establish the creation operator a∗ of the q-oscillator defined by a a∗ − q a∗a = 1
as the union operator associated with the random set A (Arik et al., 1997). Thus,
as far as the operator algebra generated by a, a∗ is concerned, only the average
number of elements in a random set is important. The above construction can be
made more precise by considering the many-to-one mapping from random sets
to probabilistic fuzzy sets. Hence, to any random set P there corresponds a fuzzy
set F

F = {e1|µ1, e2|µ2 , . . . , eM |µM
} (22)

with 0 ≤ µi ≤ 1. The membership function of an element in the fuzzy set is
the sum of the probabilities of the subsets of the random set, which contain this
element. For M = 2, we set

µ1 = p10 + p11

µ2 = p01 + p11 (23)

and for M = 3, we set

µ1 = p100 + p110 + p101 + p111

µ2 = p010 + p110 + p011 + p111

µ3 = p001 + p101 + p011 + p111 (24)

etc. This rule of obtaining a fuzzy set from a given random set is related to the
Dempster-Shafer theory of evidence (Hestir et al., 1991; Shafer, 1976) and is
called “taking the one-point trace” (Goodman, 1994; Joslyn, 1996) or “calculating
the falling shadow” (Li and Yen, 1995). This gives a specific rule for taking union
and intersection of probabilistic fuzzy sets. Fuzzy sets with arbitrary membership
functions (Novak, 1989) are possible and one can ask whether an operator al-
gebra describing union and intersection of such sets can be constructed. Such a
construction may be expected to yield a relationship among different deformation
parameters q. Indeed, we will construct the algebra associated with the operators
which we name as union and intersection operators. One important property is
that the membership operator µ̂ has continuous representations whereas for the
q-oscillator (Arik et al., 1997) it has only discrete representations. Another prop-
erty is that the operators belonging to different values of q are unified in a single
algebra.
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3. HILBERT SPACE OF FUZZY SETS

The fuzzy sets we will consider below are obtained from random sets by
taking the one-point trace. The membership function µ thus has a probabilistic
interpretation and they are probabilistic fuzzy sets. Let us define two fuzzy sets X
and Y

X = {e1|µx (e1), e2|µx (e2), . . . , eM |µx (eM )}
Y = {e1|µy (e1), e2|µy (e2), . . . , eM |µy (eM )} (25)

where 0 ≤ µx(ei) ≤ 1 and 0 ≤ µy(ei) ≤ 1. The rules of union and intersection for
these fuzzy sets are given by

µx ∪ y(ei) = µx(ei) + µy(ei) − µx(ei)µy(ei)

µx ∩ y(ei) = µx(ei)µy(ei). (26)

These rules are usually called (Zadeh, 1965, 1978, Novak, 1989; Zimmermann,
1984) the algebraic sum (probabilistic union) and the algebraic product (prob-
abilistic intersection). They are different from the commonly used union and
intersection rules defined in terms of maximum and minimum functions respec-
tively.

We now define a Hilbert space spanned by vectors labeled with µi = µ(ei),
i.e., the value of the membership function µ for the element ei . We use Dirac’s
bra-ket notation (Dirac, 1958) such that vectors are denoted by kets

| µ1, µ2, . . . , µn〉 (27)

whereas dual vectors are denoted by bras

〈µ1, µ2, . . . , µn|. (28)

We define a Hermitian membership operator µ̂i with eigenvalues µi

µ̂i | µ1, µ2, . . . , µn〉 = µi | µ1, µ2, . . . , µn〉. (29)

The orthonormality condition is given by

〈µ1, µ2, . . . , µn| ν1, ν2, . . . , νn〉 = δ(µ1 − ν1)δ(µ2 − ν2) · · · δ(µn − νn) (30)

where δ denotes the Dirac delta function.
In accordance with our simple but probably not realistic assumption, the

operators µ̂i commute among themselves

[µ̂i , µ̂j ] = µ̂iµ̂j − µ̂j µ̂i = 0 (31)

so that they are simultaneously diagonalizable. The membership functions of each
element are independent and we will simplify our notation by considering a single
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element labeled with i. Thus, we can omit the index i and express (29) and (30) as

µ̂ | µ〉 = µ | µ〉,
〈µ | ν〉 = δ(µ − ν), 0 ≤ µ, ν ≤ 1. (32)

Note that the orthonormal eigenvectors of the Hermitian operator µ̂ form a com-
plete set ∫ 1

0
| µ〉〈µ | dµ = I. (33)

4. UNION AND INTERSECTION OPERATORS

Next, we will formulate the action of union and intersection operators on this
Hilbert space. Let a∗

q denote the operator which unites a fuzzy set with membership
function 1 − q to a fuzzy set with membership function µ. In accordance with
(13) we have

a∗
q | µ〉 = √

qµ | qµ + 1 − q〉 (34)

where an additional factor of
√

q is inserted for convenience. Similarly, b∗
q is the

operator which intersects a fuzzy set with membership function q with a fuzzy set
with membership function µ

b∗
q | µ〉 =

√
q(1 − µ) | qµ〉. (35)

The eigenvalues used to label the vectors thus transform in accordance with
(26) where in the first equation µx = 1 − q, µy = µ and in the second equation
µx = q, µy = µ. The fact that operator a∗ is labeled by q = 1 − µ rather than µ

is motivated by the notation used for quantum groups. The factors in front of the
vectors on the right-hand side of (34) and (35) have been chosen so as to satisfy
two conditions: the action of Hermitian conjugates aq and bq of a∗

q and b∗
q act on

the vectors continuously and they satisfy

aq a∗
q = µ̂

bq b∗
q = 1 − µ̂. (36)

Note that the right-hand sides of these equations are independent of q and these
equations are valid for all values 0 ≤ q ≤ 1. We will prove (36) by obtaining the
action of the operators on the vectors. If we multiply (34) from left with 〈ν |, we
obtain

〈ν |a∗
q | µ〉 = √

qµ 〈ν | qµ + 1 − q〉 = √
qµ δ(ν − (qµ + 1 − q)) ,

〈µ |aq | ν〉 = 〈ν |a∗
q | µ〉 = √

qµ δ(qµ + 1 − q − ν) (37)
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=
√

q−1µ δ(µ − q−1(ν + q − 1))

=
√

q−2(ν + q − 1) 〈µ |q−1(ν + q − 1)〉θ (ν + q − 1) (38)

where

θ (x) =
{

1 , x > 0
0 , x ≤ 0

}
(39)

is the unit step function. The θ function has to be inserted when the δ function is
replaced by the inner product. This is because of the fact that the label of the ket
vector has to be between zero and one. By multiplying (38) from left with | µ〉 and
integrating over µ, using the completeness relation (33) gives

aq | ν〉 =
∫ 1

0
| µ〉〈µ |aq | ν〉 dµ

=
∫ 1

0
| µ〉

√
q−1µδ(µ − q−1(ν + q − 1)) dµ

=
√

q−2(ν + q − 1) |q−1(ν + q − 1)〉θ (ν + q − 1). (40)

Hence, aq acting on (34) from left yields

aq a∗
q | µ〉 = √

qµ aq | qµ + 1 − q〉 = √
qµ

√
q−2[(qµ + 1 − q) + q − 1] |q−1

× [(qµ + 1 − q) + q − 1]〉θ (qµ) = µ |µ〉 = µ̂ |µ〉. (41)

Similarly, from (35) one obtains

〈ν |b∗
q | µ〉 =

√
q(1 − µ) 〈ν | qµ〉 =

√
q(1 − µ) δ(ν − qµ) (42)

〈µ |bq | ν〉 = 〈ν |b∗
q | µ〉 =

√
q(1 − µ) δ(qµ − ν)

=
√

q−1(1 − µ) δ(µ − q−1ν)

=
√

q−1(1 − q−1ν) 〈µ | q−1ν〉 θ (q − ν). (43)

By multiplying (43) from left with | µ〉 and integrating over µ, using the com-
pleteness relation (33) gives

bq | ν〉 =
∫ 1

0
| µ〉〈µ |bq | ν〉 dµ

=
∫ 1

0
| µ〉

√
q−1(1 − µ) δ(µ − q−1ν) dµ

=
√

q−2(q − ν) | q−1ν〉 θ (q − ν). (44)
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Hence, bq acting on (35) from left yields

bq b∗
q | µ〉 =

√
q(1 − µ) bq | qµ〉√
q(1 − µ) =

√
q−1(1 − µ) | µ〉 θ (q − qµ)

= (1 − µ)| µ〉 = (1 − µ̂)| µ〉. (45)

We have shown that the union operator a∗
q , the intersection operator b∗

q and
their Hermitian conjugates aq , bq act on the Hilbert space of fuzzy sets spanned
by the normalized vectors | µ〉 as

aq | µ〉 =
√

q−2(µ + q − 1) |q−1(µ + q − 1)〉θ (µ + q − 1)

a∗
q | µ〉 = √

qµ | qµ + 1 − q〉
bq | µ〉 =

√
q−2(q − µ) | q−1µ〉 θ (q − µ)

b∗
q | µ〉 =

√
q(1 − µ) | qµ〉 (46)

where 0 < q ≤ 1 and 0 ≤ µ ≤ 1. It can also be shown that these operators satisfy
the following algebraic relations

a1 = a∗
1 , b1 = b∗

1, a
∗
1a1 + b∗

1b1 = 1

aqa
∗
q = a∗

1a1, bqb
∗
q = b∗

1b1

aqb1 = √
qb1aq, aqb

∗
1 = √

q b∗
1aq

bqa1 = √
q a1bq, bqa

∗
1 = √

q a∗
1bq (47)

and

aqa
∗
q = (a1)2, bqb

∗
q = (b1)2, a2

1 + b2
1 = 1. (48)

Using the following relations

a∗
q1

a1a
∗
q2

a1 | µ〉 = √
q1q2 (q2µ

2 + (1 − q2)µ) | q1q2µ + 1 − q1q2〉
a∗

q2
a1a

∗
q1

a1 | µ〉 = √
q1q2 (q1µ

2 + (1 − q1)µ) | q1q2µ + 1 − q1q2〉
a∗

q1q2
a1 | µ〉 = √

q1q2 µ | q1q2µ + 1 − q1q2〉
one obtains

q1a
∗
q1

a1a
∗
q2

− q2a
∗
q2

a1a
∗
q1

= (q1 − q2) a∗
q1q2

. (49)

The Hermitian conjugate of this relation is given by

q1aq1a
∗
1aq2 − q2aq2a

∗
1aq2 = (q1 − q2) aq1q2 . (50)
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Similar relations are also valid for b and b∗

q1b
∗
q1

b1b
∗
q2

− q2b
∗
q2

b1b
∗
q1

= (q1 − q2) b∗
q1q2

(51)

q1bq1b
∗
1bq2 − q2bq2b

∗
1bq2 = (q1 − q2) bq1q2 . (52)

The relations below

a∗
1aq1a

∗
q2

a1 | µ〉 =
√

q2

q1

[
q2

q1
µ2 + (1 − q2

q1
)µ

] ∣∣∣∣∣ q2

q1
µ + 1 − q2

q1

〉
θ

(
µ − 1 + q2

q1

)

a∗
q2/q1

a1a
∗
1a1 | µ〉 =

√
q2

q1
µ2

∣∣∣∣∣ q2

q1
µ + 1 − q2

q1

〉

a∗
q2/q1

a1 | µ〉 =
√

q2

q1
µ

∣∣∣∣∣ q2

q1
µ + 1 − q2

q1

〉

lead to

aq1a
∗
q2

= a1a
∗
q2/q1

, q2 < q1 (53)

aq1a
∗
q2

= aq1/q2a
∗
1 , q1 < q2. (54)

By taking q1/q2 = q3/q4 and using (54) one obtains

aq1a
∗
q2

= aq3a
∗
q4

. (55)

In addition, we can use the following relations

aq1b
∗
q2

| µ〉 = q−1
1

√
q2(1 − µ)

√
q2µ + q1 − 1 | q−1

1 (q2µ + q1 − 1)〉
× θ (q2µ + q1 − 1)

b∗
q3

aq4 | µ〉 = q−1
4

√
q3(1 − µ)

√
q−1

4 (µ + q4 − 1) | q−1
4 q3(µ + q4 − 1)〉

× θ (µ + q4 − 1)

to obtain

aq1b
∗
q2

= √
q3q4 b∗

q3
aq4 (56)

where 1 − q1 = q2(1 − q4) and q2/q1 = q3/q4. Finally, the relations

a∗
q1

b∗
q2

| µ〉 = q2
√

q1

√
µ(1 − µ) | q1q2µ + 1 − q1〉

b∗
q3

a∗
q4

| µ〉 = q4
√

q3

√
µ(1 − µ) | q3q4µ + q3(1 − q4)〉

give us
√

q1 a∗
q1

b∗
q2

= √
q3 b∗

q3
a∗

q4
(57)
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or
√

q4 a∗
q1

b∗
q2

= √
q2 b∗

q3
a∗

q4
(58)

where q1, q2, q3, q4 are not independent but satisfy 1 − q1 = q3(1 − q4) and
q1q2 = q3q4. We can also express these as follows

q3 = 1 − q1 + q1q2, q4 = q1q2/q3. (59)

5. OPERATOR ALGEBRA OF QUANTIZED FUZZY SETS

Now, we would like to address the question of what (minimal) subset of the
algebraic relations computed above is sufficient to prove that the representation
is given by (46). We will prove that the relations (49), (51) together with some
supplementary relations given in (47) uniquely specify the algebra. Hence, we
start with the following relations

q1a
∗
q1

a1a
∗
q2

− q2a
∗
q2

a1a
∗
q1

= (q1 − q2) a∗
q1q2

(60)

q1b
∗
q1

b1b
∗
q2

− q2b
∗
q2

b1b
∗
q1

= (q1 − q2) b∗
q1q2

(61)

a1 = a∗
1 , b1 = b∗

1 (62)

a∗
1a1 + b∗

1b1 = 1 (63)

for all 0 < q1, q2 ≤ 1. These relations are invariant under the interchange of aq

and bq . For simplicity we will define

Aq ≡ a∗
1aq, Bq ≡ b∗

1bq (64)

so that (60) and (61) reduces to

q1Aq2Aq1 − q2Aq1Aq2 = (q1 − q2) Aq1q2 (65)

q1Bq2Bq1 − q2Bq1Bq2 = (q1 − q2) Bq1q2 . (66)

We denote the eigenvalue of A1, A∗
1 by µ, then from (63) the eigenvalue of B1, B∗

1
becomes 1 − µ:

A1| µ〉 = A∗
1| µ〉 = µ | µ〉 (67)

B1| µ〉 = B∗
1 | µ〉 = (1 − µ) | µ〉. (68)

Since A1 and B1 must be nonnegative operators, we must have 0 ≤ µ ≤ 1.
Using these relations, we will derive the actions of Aq , A∗

q , Bq , B∗
q on vectors

| µ〉. In (65) taking q1 = 1 and q2 = q gives

AqA1 = qA1Aq + (1 − q)Aq.
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By taking the Hermitian conjugate of both sides, one can obtain the action of the
operators A∗

q on vectors | µ〉
A∗

1A
∗
q | µ〉 = qA∗

qA1| µ〉 + (1 − q)A∗
q | µ〉 = (qµ + 1 − q)A∗

q | µ〉.
It follows that A∗

q must be of the form

A∗
q | µ〉 = C(µ) |qµ + 1 − q〉. (69)

Hence, using the orthonormality condition 〈µ | ν〉 = δ(µ − ν), we obtain

C(µ) = √
q µ.

By substituting C(µ) in (69) one obtains

A∗
q | µ〉 = √

q µ |qµ + 1 − q〉. (70)

The calculation of Aq | µ〉 is slightly more tricky. Multiplying (70) from left by
〈ν | and taking complex conjugate of both sides and using the orthonormality
condition, we find

〈µ |Aq | ν〉 = √
q µ δ(qµ + 1 − q − ν) =

√
q−1 µδ(µ + q−1 − 1 − q−1ν)

=
√

q−1 µ 〈µ | q−1(ν + q − 1)〉 θ (q−1(ν + q − 1)) (71)

so that

Aq | ν〉 =
√

q−1 [ q−1(ν + q − 1)] | q−1(ν + q − 1)〉 θ (ν + q − 1). (72)

Similarly, in (66) taking q2 = 1 and q1 = q gives

BqB1 = qB1Bq + (1 − q)Bq.

After taking the Hermitian conjugate of both sides one can obtain the action of B∗
q

operators on vectors | µ〉
B∗

1 B∗
q | µ〉 = qB∗

qB1| µ〉 + (1 − q)B∗
q | µ〉 = (1 − qµ)B∗

q | µ〉.
Hence B∗

q must be of the form

B∗
q | µ〉 = K(µ) |qµ〉. (73)

Using the condition 〈µ | ν〉 = δ(µ − ν), we get

K(µ) = √
q (1 − µ).

By substituting K(µ) in (73) one obtains

B∗
q | µ〉 = √

q (1 − µ) |qµ〉. (74)

Multiplying (74) from left by 〈ν | and taking complex conjugate of both sides and
using the orthonormality condition, we obtain

〈µ |Bq | ν〉 = √
q (1 − µ) δ(qµ − ν) =

√
q−1 (1 − µ) δ(µ − q−1ν)

=
√

q−1 (1 − µ) 〈µ | q−1ν〉 θ (q−1(q − ν)) (75)
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which yields

Bq | ν〉 =
√

q−1 (1 − q−1ν) | q−1ν〉 θ (q − ν). (76)

Let us now consider the Hermitian operator a1 = a∗
1 and its eigenvector | α〉

with eigenvalue α

a1 | α〉 = α | α〉, α ε R. (77)

Then A1 has eigenvalue α2

A1 | α〉 = a2
1 | α〉 = α2 | α〉.

Hence we can set

| α〉 = |µ, sgn α〉, α = ±√
µ.

The two signs of α correspond to aq → −aq symmetry of the algebra (60)–(63).
The vectors corresponding to different values of the sign of α are orthogonal and
we have the following relations

a1 | µ,+〉 = √
µ | µ,+〉

a1 | µ,−〉 = −√
µ | µ,−〉

〈µ,+ | ν,−〉 = 0.

Thus, the vectors with only one value of the sign form an irreducible representation.
Henceforth, we will only consider the plus sign since the other sign can also follow
a similar treatment. From (64), (70) and (77) we have

A∗
q | µ〉 = a∗

qa1| µ〉 = √
µa∗

q | µ〉 = √
q µ | qµ + 1 − q〉

so that

a∗
q | µ〉 = √

qµ | qµ + 1 − q〉. (78)

Multiplying (78) from left with the bra vector 〈ν |, taking complex conjugation of
both sides and using the orthonormality condition we find

〈µ | aq | ν〉 = √
qµ δ(qµ + 1 − q − ν) =

√
q−1µ δ(µ − q−1(ν + q − 1))

=
√

q−1µ 〈µ | q−1(ν + q − 1)〉 θ (q−1(ν + q − 1))

which yields

aq | ν〉 =
√

q−2(ν + q − 1) | q−1(ν + q − 1)〉 θ (ν + q − 1). (79)

In a similar manner, when we consider the Hermitian operator b1 = b∗
1, (68)

shows that we can set

b1| µ〉 =
√

1 − µ | µ〉.
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From (64), (74) and (80) we can write

B∗
q | µ〉 = b∗

qb1| µ〉 =
√

1 − µ b∗
q | µ〉 = √

q (1 − µ) | qµ〉
and obtain

b∗
q | µ〉 =

√
q(1 − µ) | qµ〉. (80)

To calculate bq | ν〉 we follow the same steps as before

〈µ | bq | ν〉 =
√

q(1 − µ) δ(qµ − ν) =
√

q−1(1 − µ) δ(µ − q−1ν)

=
√

q−1(1 − µ) 〈µ | q−1ν〉 θ (q−1(q − ν))

so that

bq | ν〉 =
√

q−2(q − ν) | q−1ν〉 θ (q − ν). (81)

The relations (78)–(81) are the same as the relations given in (46). Hence,
the algebra of quantized fuzzy sets given by (60)–(63) has the quantized fuzzy set
representation.

6. CONCLUSION

In conclusion, we can state that we were able to construct a consistent operator
algebra of quantized fuzzy sets starting from the relations (34) and (35) where a∗

q

and b∗
q are the operator versions of union and intersection rules for probabilistic

fuzzy sets, respectively. The relations (47) and (48) satisfied by these operators
bear a striking resemblance to the operator algebra (1)–(5) satisfied by the elements
of quantum group matrix SUq(2). In fact, if we pick only the relations involving
aq, a

∗
q , b1, b

∗
1 in (47) and (48) we obtain

aq a∗
q + b1 b∗

1 = 1 (82)

b1 b∗
1 = b∗

1 b1 (83)

aq b1 = √
q b1 aq (84)

aq b∗
1 = √

q b∗
1 aq. (85)

There exist two differences between (1)–(5) and (82)–(85). One is that the first
equality (1) is missing, the second is that in (82)–(85) b1 = b∗

1 whereas in (1)–
(5) there is no such requirement. For the algebra (1)–(5) imposing the condition
b = b∗ yields a consistent algebra, however this will destroy the quantum group
related co-algebra structure of SUq(2).

We hope that further investigations along the lines of this work will yield an
understanding of the relationship between fuzzy sets and quantum physics. In this
respect a consistent algebra where membership functions of different elements do
not commute will be desirable.
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